Flexible Acoustic Particle Manipulation Device with Integrated Optical Waveguide for Enhanced Microbead Assays
(2), 285-291, 2009.
Anal. Sci. 25Abstract
Realisation of a device intended for the manipulation and detection of bead-tagged DNA and other bio-molecules is presented. Acoustic radiation forces are used to manipulate polystyrene micro-beads into an optical evanescent field generated by a laser pumped ion-exchanged waveguide. The evanescent field only excites fluorophores brought within approximately 100 nm of the waveguide, allowing the system to differentiate between targets bound to the beads and those unbound and still held in suspension. The radiation forces are generated in a standing-wave chamber that supports multiple acoustic modes, permitting particles to be both attracted to the waveguide surface and also repelled. To provide further control over particle position, a novel method of switching rapidly between different acoustic modes is demonstrated, through which particles are manipulated into an arbitrary position within the chamber. A novel type of assay is presented: a mixture of streptavidin coated and control beads are driven towards a biotin functionalised surface, then a repulsive force is applied, making it possible to determine which beads became bound to the surface. It is shown that the quarter-wave mode can enhance bead to surface interaction, overcoming potential barriers caused by surface charges. It is demonstrated that by measuring the time of flight of a microsphere across the device the bead size can be determined, providing a means of multiplexing the detection, potentially detecting a range of different target molecules, or varying bead mass.