Modulation of Density and Orientation of Amphiphilic DNA on Phospholipid Membranes. II. Vesicles

M. Banchelli, F. Gambinossi, A. Durand, G. Caminati, T. Brown, D. Berti and P. Baglioni. J. Phys. Chem. B 114 (21), 7348-7358, 2010.


In the present series of papers, we describe the results of a systematic study on the anchoring of cholesterol-tagged oligonucleotides to phospholipid bilayers followed by membrane-assisted hybridization of the complementary strand in solution. This paper compares the behavior of two cholesteryl modified oligonucleotides, differing in the architecture and hydrophobicity of the lipophilic moiety, in the self-aggregation, hybridization, and insertion in phospholipid vesicle membranes. We have focused our attention on a singly substituted derivative (SC-ON(1)) and a multicholesterol (MC-ON(1)) derivative, where the cholesteryl units are inserted at the desired positions along a noncoupling T-sequence. The self-aggregation properties in solution are also explicitly taken into account and evaluated as competitive with respect to the adsorption at fluid or solid interfaces and to hybridization with the complementary ON(2) sequence. By exploring a wide range of ON derivative concentrations, different peculiar scenarios emerge for different hydrophobicity of the amphiphilic DNA guest molecules on the vesicles, in terms of distribution and conformation of the single strand and consequent coupling properties with the complementary strand in solution.